Staff profiles

Phaedra UptonLand and Marine Geoscience Theme Leader

Pronouns

she/her

Department

Land and Marine Geosciences Theme

Contact me

Biography

Phaedra is a geodynamic modeller who researches a wide range of problems in tectonics. She is adept at using numerical models in collaboration with geologists from a range of subdisciplines to produce insights into a large variety of processes including faulting, fluid flow, heat transfer, drainage evolution, placer gold deposition and the relationship between tectonics and genetics. As a Theme Leader at GNS Science, she practises authentic and collaborative leadership. She promotes diversity of thought and inclusivity as vital to achieving our scientific goals. Phaedra was the 2020 New Zealand Geosciences Hochstetter Lecturer.

Qualifications

  • Diploma, Geology
  • PhD, Geology
  • BSc Hons, Chemistry

Areas of expertise

  • Geology: Heat flow and thermal regimes
  • Geology: Tectonics
  • Geophysics: Crustal deformation and neotectonics
  • Geology: Crustal tectonics
  • Geophysics: Modelling
  • Geology: Active fault studies
  • Geology: 3D modelling
  • Geology: Geomorphology
  • Geology: Plate boundary deformation processes
  • Geology: Landscape evolution
  • Business Development: Team Leadership and Project Management
  • Geology: Geodynamics
  • Business Development: Tectonic Geomorphology

Major Publications

See all publications

  • Eberhart-Phillips, D.; Upton, P.; Reyners, M.E.; Barrell, D.J.A.; Fry, B.; Bourguignon, S.; Warren-Smith, E. 2022. The influence of basement terranes on tectonic deformation: joint earthquake travel-time and ambient noise tomography of the southern South Island, New Zealand, Tectonics 41(4): e2021TC007006. DOI: 10.1029/2021TC007006.
  • Duvall, A.R.; Harbert, S.A.; Upton, P.; Tucker, G.E.; Flowers, R.M.; Collett, C. 2020. River patterns reveal two stages of landscape evolution at an oblique convergent margin, Marlborough Fault System, New Zealand, Earth Surface Dynamics 8(1): p. 177-194. DOI: 10.5194/esurf-8-177-2020.
  • Upton, P.; Koons, P.O.; Roy, S.G. 2018. Rock failure and erosion of a fault damage zone as a function of rock properties: Alpine Fault at Waikukupa River, New Zealand Journal of Geology and Geophysics 61(3): p. 367-375. DOI: 10.1080/00288306.2018.1430592.
  • Upton, P.; Song, B.R.; Koons, P.O. 2018. Topographic control on shallow fault structure and strain partitioning near Whataroa, New Zealand demonstrates weak Alpine Fault, New Zealand Journal of Geology and Geophysics 61(1): p. 1-8. DOI: 10.1080/00288306.2017.1397706.
  • Craw, D.; Upton, P.; Waters, J.; Wallis, G. 2017. Biological memory of the first Pleistocene glaciation in New Zealand, Geology 45(7): p.595-598. DOI: 10.1130/G39115.1.
  • Sutherland, R.; Townend, J.; Toy, V.G.; Upton, P.; Coussens, J.; Allen, M.; Baratin, L.-M.; Barth, N.; Becroft, L.; Boese, C.; Boles, A.; Boulton, C.; Broderick, N.G.R.; Janku-Capova, L.; Carpenter, B.M.; Célérier, B.; Chamberlain, C.; Cooper, A.; Coutts, 2017. Extreme hydrothermal conditions at an active plate-bounding fault, Nature 546: p. 137-140. DOI: 10.1038/nature22355.
  • Upton, P.; Craw, D. 2016. Coeval emplacement and orogen-parallel transport of gold in oblique convergent orogens, Tectonophysics 693(B): p. 197-209. DOI: 10.1016/j.tecto.2016.01.015.
  • Craw, D.; Upton, P.; Burridge, C.P.; Wallis, G.P.; Waters, J.M. 2016. Rapid biological speciation driven by tectonic evolution in New Zealand, Nature geoscience 9(2): p. 140-144. DOI: 10.1038/ngeo2618.
  • Roy, S.G.; Koons, P.O.; Upton, P.; Tucker, G.E. 2016. Dynamic links among rock damage, erosion, and strain during orogenesis, Geology 44(7): p. 583-586. DOI: 10.1130/G37753.1.
  • Roy, S.; Koons, P.O.; Upton, P.; Tucker, G. 2015. The influence of crustal strength fields on patterns and rates of fluvial incision, Journal of Geophysical Research. Earth Surface 120(2): p. 275-299. DOI: 10.1002/2014JF003281.
  • Upton, P.; Craw, D. 2014. Modelling of structural and lithological controls on mobility of fluids and gold in orogenic belts, New Zealand, Gold-transporting in hydrothermal fluids in the earth's crust : p. 231-253. DOI: 10.1144/SP402.1.
  • Upton, P.; Sutherland, R. 2014. High permeability and low temperature correlates with proximity to brittle failure within mountains at an active tectonic boundary, Manapouri tunnel, Fiordland, New Zealand, Earth and Planetary Science Letters 389: p. 176-187. DOI: 10.1016/j.epsl.2013.12.032.
  • Koons, P.O.; Upton, P.; Barker, A.D. 2012. The influence of mechanical properties on the link between tectonic and topographic evolution, Geomorphology 137(1): p. 168-180. DOI: 10.1016/j.geomorph.2010.11.012.
  • Upton, P.; Koons, P.O.; Craw, D.; Henderson, C.M.; Enlow, R. 2009. Along-strike differences in the Southern Alps of New Zealand : consequences of inherited variation in rheology, Tectonics 28: TC2007. DOI: 10.1029/2008TC002353.
  • Upton, P.; Koons, P.O. 2007. Three-dimensional geodynamic framework for the central Southern Alps, New Zealand : integrating geology, geophysics and mechanical observations, A continental plate boundary : tectonics at South Island, New Zealand : p. 253-270.
  • Upton, P.; Koons, P.O.; Eberhart-Phillips, D. 2003. Extension and partitioning in an oblique subduction zone, New Zealand : constraints from three-dimensional numerical modeling, Tectonics 22(6): 1068. DOI: 10.1029/2002TC001431.
  • Upton, P.; Craw, D.; Caldwell, T.G.; Koons, P.O.; James, Z.; Wannamaker, P.E.; Jiracek, G.J.; Chamberlain, C.P. 2003. Upper crustal fluid flow in the outboard region of the Southern Alps, New Zealand, Geofluids 3(1): p. 1-12.
  • Upton, P. 1998. Modelling localization of deformation and fluid flow in a compressional orogen : implications for the Southern Alps of New Zealand, American Journal of Science 298(4): p. 296-323.
  • Koons, P.O.; Craw, D.; Cox, S.C.; Upton, P.; Templeton, A.S.; Chamberlain, C.P. 1998. Fluid flow during active oblique convergence : a Southern Alps model from mechanical and geochemical observations, Geology 26(2): p. 159-162.

External Profiles

Contact