Staff profiles

Craig MillerSenior Volcano Geophysicist

Miller Craig 3156

Pronouns

he/his/him

Department

Volcanology

Contact me

Biography

Craig is a Senior Volcano Geophysicist specialising in application of geophysical potential field and electrical methods to model volcanic structure and time-varying processes. His research involves applying novel inversion techniques to image volcanic architecture and the use of data-driven models to interpret volcanic unrest in a probabilistic sense. He currently leads the Beneath the Waves Endeavour programme which aims to quantify hazards from New Zealand's near shore island volcanoes. He was worked on numerous volcanic eruptions and unrest episodes in NZ, Vanuatu and Chile and has been a member of the volcano duty team since 2003.

Qualifications

  • MSc, Geology / Geophysics
  • PhD, Earth Science

Areas of expertise

  • Geophysics: Global position system
  • Geology: Volcanology
  • Geophysics: Field data collection
  • Geophysics: Volcanic hazards
  • Geophysics: Exploration Geophysics
  • Geophysics: Geothermal exploration
  • Geophysics: Gravity
  • Business Development: Team Leadership and Project Management
  • Business Development: Volcano Geophysics
  • Geophysics: Volcano Geophysics
  • Geophysics: Volcano Geodesy
  • Geophysics: GNSS (Global Navigation Satellite Sys)
  • Geophysics: Gravity interpretation
  • Geophysics: Magnetic Interpretation

Major Publications

See all publications

  • Miller, C.A.; Barretto, J.; Stagpoole, V.M.; Caratori Tontini, F.; Brakenrig, T.; Bertrand, E.A. 2022. The integrated history of repeated caldera formation and infill at the Okataina Volcanic Centre : insights from 3D gravity and magnetic models, Journal of Volcanology and Geothermal Research 427: article107555. DOI: 10.1016/j.jvolgeores.2022.107555.
  • Christophersen, A.; Behr, Y.; Miller, C.A. 2022. Automated eruption forecasting at frequently active volcanoes using Bayesian networks learned from monitoring data and expert elicitation : application to Mt Ruapehu, Aotearoa, New Zealand, Frontiers in Earth Science 10: article 905965. DOI: 10.3389/feart.2022.905965.
  • Camacho, A.G.; Vajda, ,P.; Miller, C.A.; Fernández, J. 2021. A free-geometry geodynamic modelling of surface gravity changes using Growth-dg software, Scientific Reports 11: article 23442. DOI: 10.1038/s41598-021-02769-z.
  • Burton, M.; Hayer, C.; Miller, C.A.; Christenson, B.W. 2021. Insights into the 9 December 2019 eruption of Whakaari/White Island from analysis of TROPOMI SO2 imagery, Science Advances 7(25): eabg1218. DOI: 10.1126/sciadv.abg1218.
  • Trevino, S.F.; Miller, C.A.; Tikoff, B.; Fournier, D.; Singer, B.S. 2021. Multiple, coeval silicic magma storage domains beneath the Laguna Del Maule volcanic field inferred from gravity investigations, Journal of Geophysical Research. Solid Earth 126(4): e2020JB020850. DOI: 2020JB020850.
  • Vajda, P.; Zahorec, P.; Miller, C.A.; Le Mével, H.; Papčo, J.; Camacho, A.G. 2021. Novel treatment of the deformation–induced topographic effect for interpretation of spatiotemporal gravity changes: Laguna del Maule (Chile), Journal of Volcanology and Geothermal Research 414: article 107230. DOI: 10.1016/j.jvolgeores.2021.107230.
  • Kereszturi, G.; Schaefer, L.; Mead, S.; Miller, C.A.; Procter, J.; Kennedy, B. 2021. Synthesis of hydrothermal alteration, rock mechanics and geophysical mapping to constrain failure and debris avalanche hazards at Mt. Ruapehu (New Zealand), New Zealand Journal of Geology and Geophysics 64(2/3): p. 421-442. DOI: 10.1080/00288306.2021.1885048.
  • Stagpoole, V.M.; Miller, C.A.; Caratori Tontini, F.; Brakenrig, T.; Macdonald, N. 2021. A two million-year history of rifting and caldera volcanism imprinted in new gravity anomaly compilation of the Taupo Volcanic Zone, New Zealand, New Zealand Journal of Geology and Geophysics 64(2/3): p. 358-371. DOI: 10.1080/00288306.2020.1848882.
  • Miller, C.A.; Christenson, B.W.; Byrdina, S.; Vandemeulebrouck, J.; Brakenrig, T.; Britten, K.; Shanks, J.; Epstein, G. 2020. Snapshot of a magmatic/hydrothermal system from electrical resistivity tomography and fumarolic composition, Whakaari/White Island, New Zealand, Journal of Volcanology and Geothermal Research 400: article 106909. DOI: 10.1016/j.jvolgeores.2020.106909.
  • Kereszturi, G.; Schaefer, L.; Miller, C.A.; Pullanagari, R.; Mead, S. 2020. Hydrothermal alteration on composite volcanoes: mineralogy, hyperspectral imaging and aeromagnetic study of Mt Ruapehu, New Zealand, Geochemistry Geophysics Geosystems 21(9): e2020GC009270. DOI: 10.1029/2020GC009270.
  • Peterson, D.E.; Garibaldi, N.; Keranen, K.; Tikoff, B.; Miller, C.A.; Lara, L.E.; Tassara, A.; Thurber, C.; Lanza, F. 2020. Active normal faulting, diking, and doming above the rapidly inflating Laguna del Maule volcanic field, Chile, imaged with CHIRP, magnetic, and focal mechanism data, Journal of Geophysical Research. Solid Earth 125(8): e2019JB019329. DOI: 10.1029/2019JB019329.
  • Miller, C.A.; Schaefer, L.N.; Kerezsturi, G.; Fournier, D. 2020. Three dimensional mapping of Mt Ruapehu volcano, New Zealand, from aeromagnetic data inversion and hyperspectral imaging, Journal of Geophysical Research. Solid Earth 125(2): e2019JB018247. DOI: 10.1029/2019JB018247.
  • Wespestad, C.E.; Thurber, C.H.; Andersen, N.L.; Singer, B.S.; Cardona, C.; Zeng, X.; Bennington, N.L.; Keranen, K.; Peterson, D.E.; Cordell, D.; Unsworth, M.; Miller, C.A.; Williams-Jones, G. 2019. Magma reservoir below Laguna de Maule volcanic field, Chile imaged with surface-wave tomography, Journal of Geophysical Research. Solid Earth 124(3): p. 2858-2872. DOI: 10.1029/2018JB016485.
  • Zhan, Y.; Gregg, P.M.; Le Mével, H.; Miller, C.A.; Cardona, C. 2019. Integrating reservoir dynamics, crustal stress, and geophysical observations of the Laguna del Maule magmatic system by FEM models and data assimilation, Journal of Geophysical Research. Solid Earth 124(12): p. 13547-13562. DOI: 10.1029/2019JB018681.
  • Miller, C.A.; Kang, S.G.; Fournier, D.; Hill, G. 2018. Distribution of vapor and condensate in a hydrothermal system : insights from self-potential inversion at Mount Tongariro, New Zealand, Geophysical Research Letters 45(16): p. 8190-8198. DOI: 10.1029/2018GL078780.
  • Miller, C.A.; Currenti, G.; Hamling, I.J.; Williams-Jones, G. 2018. Mass transfer processes in a post eruption hydrothermal system : parameterisation of microgravity changes at Te Maari craters, New Zealand, Journal of Volcanology and Geothermal Research 357: p. 39-55. DOI: 10.1016/j.jvolgeores.2018.04.005.
  • Till, C.B.; Pritchard, M.; Miller, C.A.; Brugman, K.K.; Ryan-Davis, J. 2018. Super-volcanic investigations, Nature geoscience 11(4): p. 227-229. DOI: 10.1038/s41561-018-0100-1.
  • Miller, C.A.; Le Mével, H.; Currenti, G.; Williams-Jones, G.; Tikoff, B. 2017. Microgravity changes at the Laguna del Maule volcanic field : magma-induced stress changes facilitate mass addition, Journal of Geophysical Research. Solid Earth 122(4): p. 3179-3196. DOI: 10.1002/2017JB014048.
  • Miller, C.A.; Williams-Jones, G.; Fournier, D.; Witter, J. 2017. 3D gravity inversion and thermodynamic modelling reveal properties of shallow silicic magma reservoir beneath Laguna del Maule, Chile, Earth and Planetary Science Letters 459: p. 14-27. DOI: 10.1016/j.epsl.2016.11.007.
  • Miller, C.A.; Williams-Jones, G. 2016. Internal structure and volcanic hazard potential of Mt Tongariro, New Zealand, from 3D gravity and magnetic models, Journal of Volcanology and Geothermal Research 319: p. 12-28. DOI: 10.1016/j.jvolgeores.2016.03.012.
  • Miller, C.A.; Jolly, A.D. 2014. A model for developing best practice volcano monitoring : a combined threat assessment, consultation and network effectiveness approach, Natural hazards 71(1): p. 493-522. DOI: 10.1007/s11069-013-0928-z.

External Profiles

Contact

By continuing with this download you agree to abide by the rules laid out in the Terms and conditions/Terms of use listed on this page.

If there are no specific Terms and conditions/Terms of use listed then please refer to our Copyright and Disclaimer page and Privacy Policy page

Download