Karin KvaleCarbon Cycle Modeller
Biography
I am interested in internally and externally-driven ocean biogeochemical feedbacks and climate system thresholds. I use intermediate-complexity climate models to test representations of marine biogeochemistry and phytoplankton ecology with the objective of cost-effectively simulating their influence on climate over a variety of timescales. My current work explores model structural uncertainty using parameter optimisation methods, the role of calcifier-diatom competition in climate over glacial timescales, greenhouse climate and biogeochemical dynamics, and the fate and transport of microplastic via biological pathways and biogeochemical effects. I am an expert in modelling the role of marine ecology in global biogeochemical cycles and in simulating the response of ocean primary production to climate change and microplastic. Please see one of my recent presentations on microplastic: https://media.oregonstate.edu/media/t/1_vsznklzs/210952743
Qualifications
- BSc, Environmental Science
- MSc, Atmospheric Science
- PhD, Climate Science
Major Publications
See all publications
- Misconceptions of the marine biological carbon pump in a changing climate : thinking outside the export box, Global Change Biology 30(1): article e17124. DOI: 10.1111/gcb.17124. article e17124
- Impact of plastic pollution on atmospheric carbon dioxide, Facets 8: 7 p.. DOI: 10.1139/facets-2023-0061. 7 p.
- Recovery from microplastic-induced marine deoxygenation may take centuries, Nature Geoscience 16(1): p. 10-12. DOI: 10.1038/s41561-022-01096-w. p. 10-12
- Regionally disparate ecological responses to microplastic slowing of faecal pellets yields coherent carbon cycle response, Frontiers in Marine Science 10: article 1111838. DOI: 10.3389/fmars.2023.1111838. article 1111838
- Impact of iron fertilisation on atmospheric CO2 during the last glaciation, Climate of the Past 19(7): 31 p.. DOI: 10.5194/cp-19-1559-2023. 31 p.
- Legacy oceanic plastic pollution must be addressed to mitigate possible long-term ecological impacts, Microplastics and Nanoplastics 3: article 25. DOI: 10.1186/s43591-023-00074-2. article 25
- Enhanced silica export in a future ocean triggers global diatom decline, Nature 605: p. 696-700. DOI: 10.1038/s41586-022-04687-0. p. 696-700
- Implications of plastic pollution on global marine carbon cycling and climate, Emerging Topics in Life Sciences 6(4): p. 359-369. DOI: 10.1042/ETLS20220013. p. 359-369
- What are small size microplastics distributions telling us?, Global Change Biology 28(9): p. 2843-2845. DOI: 10.1111/gcb.16129. p. 2843-2845
- Simulated future trends in marine nitrogen fixation are sensitive to model iron implementation, Global Biogeochemical Cycles 36(3): e2020GB006851. DOI: 10.1029/2020GB006851. e2020GB006851
- Zooplankton grazing of microplastic can accelerate global loss of ocean oxygen, Nature Communications 12(1): article 2358. DOI: 10.1038/s41467-021-22554-w. article 2358
- Calcifying phytoplankton demonstrate an enhanced role in greenhouse atmospheric CO2 regulation, Frontiers in Marine Science 7: article 583989. DOI: 10.3389/fmars.2020.583989. article 583989
- Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9, Geoscientific Model Development 14(12): p. 7255-7285. DOI: 10.5194/gmd-14-7255-2021. p. 7255-7285
- Southern Ocean ecosystem response to Last Glacial Maximum boundary conditions, Paleoceanography and Paleoclimatology 36(7): e2020PA004075. DOI: 10.1029/2020PA004075. e2020PA004075
- One size fits all? Calibrating an ocean biogeochemistry model for different circulations, Biogeosciences 17(12): p. 3057-3082. DOI: 10.5194/bg-17-3057-2020. p. 3057-3082
- The global biological microplastic particle sink, Scientific Reports 10: article 16670. DOI: 10.1038/s41598-020-72898-4. article 16670
- A critical examination of the role of marine snow and zooplankton fecal pellets in removing ocean surface microplastic, Frontiers in Marine Science 6: article 808. DOI: 10.3389/fmars.2019.00808. article 808
- Hierarchy of calibrated global models reveals improved distributions and fluxes of biogeochemical tracers in models with explicit representation of iron, Environmental Research Letters 14(11): article 114009. DOI: 10.1088/1748-9326/ab4c52. article 114009
- Phytoplankton calcifiers control nitrate cycling and the pace of transition in warming icehouse and cooling greenhouse climates, Biogeosciences 16(5): p. 1019-1034. DOI: 10.5194/bg-16-1019-2019. p. 1019-1034
- Asymmetric dynamical ocean responses in warming icehouse and cooling greenhouse climates, Environmental Research Letters 13(12): article 125011. DOI: 10.1088/1748-9326/aaedc3/meta. article 125011
- Evaluation of the transport matrix method for simulation of ocean biogeochemical tracers, Geoscientific Model Development 10(6): p. 2425-2445. DOI: 10.5194/gmd-10-2425-2017. p. 2425-2445
- Primary production sensitivity to phytoplankton light attenuation parameter increases with transient forcing, Biogeosciences 14(20): p. 4767-4780. DOI: 10.5194/bg-14-4767-2017. p. 4767-4780
- Explicit planktic calcifiers in the University of Victoria Earth System Climate Model version 2.9, Atmosphere-Ocean 53(3): p. 332-350. DOI: 10.1080/07055900.2015.1049112. p. 332-350
- Potential increasing dominance of heterotrophy in the global ocean, Environmental Research Letters 10(7): article 074009. DOI: 10.1088/1748-9326/10/7/074009. article 074009
- Carbon dioxide emission pathways avoiding dangerous ocean impacts, Weather, Climate, and Society 4(3): p. 212-229. DOI: 10.1175/WCAS-D-11-00030.1. p. 212-229
- The combined impact of CO2 -dependent parameterisations of Redfield and Rain ratios on ocean carbonate saturation, Biogeosciences Discussions 8: p. 6265-6280. DOI: 10.5194/bgd-8-6265-2011. p. 6265-6280
- Precipitation composition in the Ohio River Valley : spatial variability and temporal trends, Water, Air, and Soil Pollution 170: p. 143-160. DOI: 10.1007/s11270-006-2861-1. p. 143-160
- A laboratory exercise to determine dinosaur speeds using dimensional analysis, Journal of Geoscience Education 48(3): p. 342-361. DOI: 10.5408/1089-9995-48.3.342. p. 342-361