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ABSTRACT 

We use numerical simulations of earthquake ground shaking to test the ability of natural 
warning to trigger self-evacuation in communities in the north-western North Island that are 
at risk of tsunami generated along the Kermadec Subduction Zone in the southwest Pacific. 
In this region, self-evacuation defined as “Long or Strong, Get Gone” is the dominant 
mechanism for risk mitigation. However, we conclude that many possible earthquakes will 
not be felt strongly in these regions, including densely populated metropolitan areas on the 
coast from the Bay of Plenty to Northland, such as the cities of Tauranga, Auckland and 
Whangarei. These earthquakes could then cause tsunami waves with maximum wave 
amplitudes in excess of 5m within the first hour after the earthquake. This finding suggests 
that reliance on self-evacuation alone must be supplemented with scientific monitoring and 
alerting mechanisms to protect vulnerable populations. 
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Kermadec Subduction zone, megathrust earthquake, tsunami, subduction ground motions
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1.0 INTRODUCTION 

The 2004 Sumatran earthquake and subsequent tsunami triggered global efforts to 
implement effective tsunami early warning in the world’s major tsunami-prone ocean basins. 
Tsunami early warning for earthquake generated tsunami typically involves using seismic 
observations of the causal earthquake to estimate the size of the tsunami that was generated 
and then forecasting the resulting impacts in coastal regions. This forecasting process is 
iteratively refined as further data is available from ocean observations. This effort is still 
ongoing and rapid advances are still continuing. Numerous promising techniques based on 
ocean elevation, atmospheric disturbance, and ground deformation are currently being 
validated and will likely find use in the coming decades. These methods are dominantly 
useful for regional or distant earthquakes in which tsunami travel times are greater than a 
few hours, and in some cases, local earthquakes that occur near to terrestrial observational 
networks. However, even with accurate rapid forecasts of approaching waves, short tsunami 
travel times from local earthquakes make warnings difficult to communicate to affected 
communities. In these situations, self-evacuation triggered by natural warning remains the 
best option for risk reduction. Natural warning is typically the perception, or “felt intensity” of 
strong ground motion at affected coastlines. 

Unfortunately, there exists a class of regional earthquakes that falls through the New 
Zealand early warning net. These are events that occur close enough to affected coasts to 
yield travel times of less than an hour yet are far enough away that terrestrial observation 
networks are inadequate to forecast tsunami impacts accurately. An outstanding question is 
whether these events will be felt strongly enough to trigger natural warning based self-
evacuation. To answer this question, we simulate ground motions from subduction 
earthquake scenarios along the Kermadec subduction zone. We show that plausible large 
Kermadec subduction zone earthquakes are capable of generating damaging tsunamis that 
can reach New Zealand coastlines within an hour of the earthquake, yet will likely not be 
strongly felt in many potentially affected communities. 

1.1 Ground Motions from Kermadec Earthquakes 

In this report, we focus on understanding ground motions from M8.5 earthquake scenarios 
occurring along the Kermadec subduction zone megathrust fault from north of East Cape to 
the Louisville Ridges. We calculate hard-rock ground motions in Tauranga as a proxy for felt 
intensity for the north coast of the North Island from the Bay of Plenty through to the coastal 
northwestern North Island. We use sophisticated numerical modeling to examine the impact 
of 3 distinct effects on the nature of ground motion intensities. These are 1) directional 
radiation of energy from the earthquake source, 2) geometrical spreading of the earthquake 
waves as they travel away from the earthquake, and 3) anelastic attenuation of seismic 
waves as they pass through the highly attenuating Havre Trough and Taupo Volcanic Zone. 

1.1.1 Azimuthally dependent source radiation 

When an earthquake occurs, seismic energy does not radiate outward in a homogenous 
fashion. Rather, the amount of energy released is dependent on orientation of the fault plane 
and mechanics of the earthquake. Directional radiation of ground shaking from thrust faults 
tends to concentrate most of the energy perpendicular to the strike of the fault (Figure 1.1). 
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Figure 1.1 Example seismograms showing dominant energy radiation in the direction perpendicular to a thrust 
fault.  The ‘beach ball’ represents a thrust fault oriented north-south. The surrounding seismograms (oriented in 
map view) clearly show most energy (largest waves) travelling east-west. Figure from Aki and Richards, 2002.   

Megathrust earthquakes along the Kermadec Subduction zone tend to focus much of their 
energy, and consequently strongest ground shaking, in a northwest-southeast direction 
(Figure 1.2). Most of their energy will be directed away from New Zealand. 
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Figure 1.2 White inset is a representation of an example of the radiation pattern of two modes of seismic 
waves radiating out from a scenario earthquake originating on the southern Kermadec Subduction zone. Other 
modes are also oriented in a similar way. Yellow and green lobes show the primary patterns of maximum energy 
of seismic surface waves travelling away from the earthquake. Note that most energy coming from Kermadec 
sources is dominantly sent in northwest-southeast directions, away from New Zealand. “TVZ” represents the 
Taupo Volcanic Zone. Havre Trough is the extension of the TVZ offshore. Both of these features influence ground 
motions and will be discussed in Section 1.1.3.  

1.1.2 Geometric spreading 

After energy has been released from the earthquake, it travels away from the source. 
Depending on the type of wave, its energy decreases rapidly with increasing to epicentral 
distance. This means that ground shaking decays rapidly with increasing distance from the 
earthquake rupture (Figure 1.3). A conventional tsunami-causing earthquake can therefore 
often simply occur too far away to be felt strongly. Tsunami waves, however, are able to be 
transmitted long distances with very little loss of energy, making them dangerous to 
coastlines even far from the source, including the sources from much of the Kermadec 
subduction zone, and the Tonga and New Hebrides subduction zones.   
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Figure 1.3 Ground motions for an M8.5 subduction zone earthquake as calculated from empirical ground 
motion prediction equations derived from fitting global observations. Models are blue (Abrahamson et al., 2016), 
green (Atkinson and Boore, 2003; 2006), and Zhao et al, 2006 (red). Distances have been colour coded 
according to felt intensities from Worden et al., (2012). Note, observational evidence suggests that, on average, 
global subduction zone earthquakes of this magnitude are not strongly felt after about 150km from the source. 
These simple calculations do not account for radiation patterns or New Zealand specific attenuation as presented 
in section 2 of this report. 

1.1.3 Anelastic attenuation 

Due to volcanic processes driven by subduction of the Pacific Plate at the Hikurangi and 
Kermadec margins, the Taupo Volcanic Zone and Havre Trough (see Figure 1.2 for location) 
are highly attenuating, or inefficient at transmitting seismic wave energy. As seismic waves 
pass through these regions, they lose amplitude at a faster rate than usual. This compounds 
the effect of geometric spreading as described above, making most tsunamigenic 
earthquakes along the Kermadec Subduction zone unlikely to be strongly felt in many 
tsunami-prone coastal areas of the northwestern North Island of New Zealand. Recent work 
has improved our understanding of this attenuation pattern (Figure 1.4, Eberhart-Phillips and 
Fry, 2018) in New Zealand, which we can assume extends farther to the north along the 
Havre Trough. 
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Figure 1.4 Map showing quality (Q), which is the inverse of attenuation for New Zealand from Eberhart-Phillips
and Fry, (2018). Regions in cool colours mark efficient propagation of seismic waves, with relatively little loss of 
energy with distance travelled. Areas in warm colours mark inefficient propagation of seismic waves, with
relatively high loss of energy with distance travelled. Yellows and greens corresponding to the TVZ and Havre 
Trough reduce much of the seismic energy from earthquakes occurring on the Kermadec Subduction zone prior 
to arrival in the western North Island.  

Recently, an M6.9 earthquake on 10 September 2018, with an epicentre approximately
600km north of the North Island along the Kermadec Subduction zone provided a ground-
truth validation of this attenuation model. GeoNet recorded over 2000 felt reports in New
Zealand (Figure 1.4). However, even with the large population of the greater 
Auckland/Whangarei/Tauranga region, only one felt report was received from the north-
western North Island. The location and density of felt reports and the low attenuation areas 
from the map presented in Figure 1.4 are notably correlated (Figure 1.5). This is strong
validation of our numerical results presented in Section 2. 
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Figure 1.5 Left panel: Felt reports overlain by predicted regions of felt intensity from the September 2018 M6.9 
Kermadec earthquake. Warmer colours show more intense shaking, cooler colours show less intense shaking. 
Note the lack of felt reports in the Auckland area and abundance of felt reports on the east coast of the North 
Island. Right panel has an overlay of the attenuation model of Eberhart-Phillips and Fry (2018). Note the strong 
correlation between regions of many felt reports and low attenuation (purple and red areas).  
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2.0 GROUND MOTION SIMULATIONS 

To understand the effects presented in 1.1-1.3 as they relate to the utility of natural warning 
triggering, we systematically use a spectral element modelling scheme (AxiSEM, Nissen-
Meyer et al., 2014) to simulate ground shaking in the North Island of New Zealand from 
scenario tsunamigenic earthquakes along the Kermadec subduction zone (Appendix 1). We 
present simulation results for M8.5 earthquakes at 2o intervals (approximately 220km) along 
the subduction zone and calculate resulting ground motions in Tauranga (Figure 2.1). We 
use Tauranga as an average proxy for the northern coast of the North Island, from the Bay of 
Plenty through the Auckland region. We calculate ground velocities to frequencies as high as 
500 mHz.  

Figure 2.1 Left panel: Results from AxiSEM simulations of M8.5 earthquakes along the Kermadec Subduction 
zone. Earthquakes are located at each of the dots. The dots are colour-shaded according to their modelled felt 
intensities in Tauranga. Right panel: Comparison of AxiSEM results and two simulations with a discrete 
wavenumber numerical scheme.  

We further test these ground motions against those calculated using a discrete wavenumber 
integration scheme (Bouchon and Aki, 1977) (Appendix 2). We use the same velocity and 
attenuation a-priori model as that implemented in the AxiSEM modeling. We model the most 
proximal event and a second event at ~1000 km. In both cases, the discrete wavenumber 
calculated ground velocities, although slightly smaller, are in general agreement with those 
calculated with the AxiSEM scheme (Figure 2.1). 

We then compare the modelled ground motions with those predicted by recent ground 
motion prediction equations (Atkinson and Boore, 2003; Abrahamson et al, 2016; Zhao et al, 
2006) (Figure 2.2). In each of these validation exercises, our synthetic calculations with 
AxiSEM lie within uncertainties or similar intensity classes as the compared data.  

Confidential 2018

52 GNS Science Consultancy Report 2018/147

Figure A4.1 Estimated level of felt shaking at the western Bay of Plenty (Tauranga) due to an Mw 8.5
Kermadec Trench earthquake at the positions indicated.

Figure A4.2 Estimated level of felt shaking at the western Bay of Plenty (Tauranga) due to an Mw 9.0
Kermadec Trench earthquake at the positions indicated.
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Figure 2.2 Comparison of our AxiSEM results with the recent ground motion prediction equation of 
Abrahamson et al., 2016. Results are within uncertainties of our numerical modelling given a simplified source 
model. Estimations of shaking for both of these techniques are compatible with the conclusion that these M8.5 
events will not generate systematically strong shaking over most much of the north-western North Island. We note 
that recorded PGA has a wider bandwidth than simulated PGA, however, the relatively larger modelled ground 
motions suggest that we are capturing most important dominant frequencies at larger distances. 
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3.0 CONCLUSIONS 

We use numerical simulations of ground motions from scenario earthquakes along the 
Kermadec subduction zone to test the limitations of the “Long or strong, get gone” self-
evacuation through natural warning. These events are credible tsunami sources (> 5m at 
some coastal areas) yet their ground motions in the north-western North Island fall below the 
“strong” threshold resulting from felt intensity studies (Worden et al., 2012). While our 
synthetic models have significant uncertainty due to the unpredictable nature of the 
earthquake rupture process and subsequent wave propagation, they provide strong evidence 
for the inadequacy of natural warning alone to trigger evacuations in the northwestern North 
Island for significant tsunamigenic events as close as a few hundred kilometers from the New 
Zealand coast.  
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A1.0 NUMERICAL SIMULATIONS 

A1.1 AxiSEM modelling 

We use the parallel spectral element method “AxiSEM” (Nissen-Meyer et al., 2013) to 
generate the 3D wavefield of earthquakes along the Kermadec Subduction zone. This 
method solves the basic equation of motion in which the summation of mass and stiffnes 
terms are equivalent to the source term: 

 

Where u is the displacement vector, w is a test vector, f is the source term, rho is the mass 
density and C is the elasticity tensor. 

This approach expands the moment tensor response to mono-, di-, and quadropoles as 
displacement terms (u) relative to azimuth (φ): 

u = u(s, z) , u = u(s, z) · f (sin φ, cos φ) , and u = u(s, z) · f (sin(2φ), cos(2φ)) , respectively, 
and convolves these with azimuthal radiation equations: 

 

Which provides the displacement wavefield at a point relative to the double-couple source. 
We solve the wave propagation within a velocity and attenuation model taken from Eberhart-
Phillips and Fry, 2018 (Figure A1.1). We further take the time derivative of the displacement 
wavefield to generate 3D velocity wavefields from which we calculate the maximum velocity 
(Figure A1.2). 

 
Figure A1.1 P and S velocity profiles (left panel) and Qp and Qs attenuation models (right panel) used in 
AxiSEM and discrete wavenumber numerical simulation. 
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be commonly known from any software implementation, the
level of automatism for the applications listed here is diverse,
and readers should refer to the manual of the most recent re-
lease version for up-to-date features of the code.

2 Methodology

The mathematical foundation and validation of spherically
symmetric, solid–fluid lower-frequency settings is detailed
in previous publications (Nissen-Meyer et al., 2007b, 2008).
In this section, we only sketch key methodological concepts,
while focusing on new additions and practical matters related
to usability, functionality and applicability. Our approach
accurately simulates 3-D wavefields in axisymmetric Earth
models, and distinguishes itself by

1. decreasing the computational costs by orders of magni-
tude compared to the 3-D method by running in 2-D,

2. making no limiting assumptions about wave-
propagation physics (except for very long-period
effects such as rotation; see Sect. 4.7) or kinematic
earthquake radiation.

It therefore falls in between traditional end members that are
typically optimized for either end of the frequency spectrum
(e.g., ray theory, normal-mode summation) and 3-D mod-
eling, by not compromising on essential wave-propagation
physics or the coverage of the entire recorded frequency band
between 0.001 and 1Hz. The efficiency gain is grounded
upon assuming axisymmetric background models, which re-
duces the numerical cost to a 2-D domain, whereas the third
dimension is tackled analytically. We shall forego detailed
treatment of classical spectral-element methods to highlight
the peculiarities associated with this axisymmetric setting.

2.1 Equations of motion

The 3-D integral (weak-form) elastodynamic equations of
motion in the solid Earth � read
mass term: M(u)z }| {Z

�
⇢w · @2t ud3x +

stiffness term: K(u)z }| {Z

�
rw :C :rud3x =

source term: F(u)z }| {Z

�
w · fd3x (1)

where u is the sought displacement vector, w a suitably cho-
sen test vector, f the source term, ⇢ the mass density, and
C the anisotropic fourth-order elasticity tensor with 21 inde-
pendent parameters (consult Nissen-Meyer et al. (2007b) for
details). It may be time dependent for intrinsic attenuation,
in which case the double contraction : implies a convolution.

2.2 Axisymmetric dimensional collapse

As shown in Nissen-Meyer et al. (2007a), one may an-
alytically separate radiation patterns into individual re-
sponses to each moment-tensor element Mij factorized in
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an approximate, order-of-magnitude estimation of computa-
tional cost, and minor algorithmic optimization does not af-
fect this overarching trend drastically. The slightly increased135

cost for AxiSEM above 10 seconds represents the fact that
the thin crustal layers at these long periods start to domi-
nate the smallest element size and thus increase the relative
cost due to this geometric constraint on the global timestep.
This is not seen in SPECFEM3D GLOBE, since intra-crustal140

layers are not explicitely meshed. Further commentary on
Fig. 1) is given in Section 2.7.

Considering desirable features for the inversion such
as comprehensive model-sampling, uncertainty analysis,
or probabilistic approaches, this represents not only a145

formidable challenge, but is essentially not computable even
with most optimistic estimates of the evolution of compu-
tation on a decadal time-scale, especially in 3D. Several
strategies of speeding up numerical methods exist, focused
on either the physical system or the implementation. Code150

optimization may exploit dedicated hardware infrastructures
such as GPUs (Rietmann et al., 2012), or algorithmic tasks
such as tensor-vector products (Nissen-Meyer et al., 2007b),
irregular meshing (Zhu et al., 2009) or local time-stepping.
These approaches usually lead to a performance speedup of155

about 2-3 in total CPU time. Physics-based approximations
often limit the frequency range either on the high end (as
implicitly done due to prohibitive cost in 3D methods) or
lower end (ray theory). Additionally, we commonly find cost
reductions related to reduced dimensionality (e.g., 2D, Zhu160

et al. (2009)), rheology (e.g. acoustic wave propagation), or
structural complexity by means of homogenization (Capdev-
ille et al., 2013). Such approximations can lead to orders of
magnitude faster codes, but need to be chosen carefully de-
pending on each application.165

1.3 3D waves in axisymmetric media

Several methods have been developed to effectively accom-
modate various levels of complexity in background struc-
tures. For spherically symmetric Earth models, normal-mode
summation (Dahlen & Tromp, 1998) elegantly tackles the170

grave end of the spectrum including such effects as grav-
ity and rotation (Dahlen, 1968). For higher frequencies,
the direct-solution method (Kawai et al., 2006), GEMINI
(Friederich & Dalkolmo, 1995), or Yspec (Al-Attar & Wood-
house, 2008) have proven efficient in delivering accurate175

seismograms. While in principle doable, all of these meth-
ods become computationally expensive if an entire wave-
field is needed as for sensitivity kernels (Nissen-Meyer et al.,
2007a), and do not allow for lateral heterogeneities. Ax-
isymmetric finite difference methods (Toyokuni & Takenaka,180

2006; Jahnke et al., 2008) may accommodate this effectively,
but suffer various shortcomings such as approximate sources,
lack of fluid domains and anisotropy (Jahnke et al., 2008),
and high dispersion errors for large propagation distances
of interface-sensitive phases such as surface or diffracted185

ul = ul(s,z)

ul = ul(s,z) · fl(sin�,cos�)

ul = ul(s,z) · fl(sin(2�),cos(2�))

Fig. 2. Radiation patterns for monopole (top), dipole (middle), and
quadrupole angular orders of the respective moment tensor ele-
ments. The azimuthal radiation patterns encapsulated by fl depend
on multipole order m as well as component l, that is, no summation
is implied by the above products.

waves. However, recent advances include a full moment ten-
sor, attenuation, and the Earth’s center (Toyokuni & Take-
naka, 2012).

The purpose of this paper is to introduce the axisymmet-
ric spectral-element implementation AxiSEM as a new and190

publicly available, production-ready method and code for
global wave propagation, which taps into parameter regimes
that have been previously unavailable at similar computa-
tional cost. We motivate the relevance of these parameter
regimes by various examples and present ideas for further195

extensions and applications. Exploitation of moment-tensor
source and single-force radiation patterns allow the compu-
tational domain to be collapsed to a 2D semi-disk, and the
azimuthal third dimension is computed analytically. Radi-
ation pattern symmetries require all sources to be located200

along the axis, and lateral heterogeneities are translated into
a 2.5-dimensional torus-like structure. Due to the dimen-
sional reduction, global wave propagation at typical seismic
periods can be tackled serially on workstations. Novel fea-
tures in this manuscript with respect to the methodology al-205

ready described in Nissen-Meyer et al. (2007b, 2008) include
2D parallelization, scalability to > 8000 cores, benchmarks
at 1Hz and for normal modes, extensions to visco-elastic
anisotropic media, fluid spheres, finite sources, axisymmetric
structures, tomographic models, comparison to data, generic210

post-processing for arbitrary source-receiver settings, sensi-
tivity kernels, and availability as an open-source code.

Figure 2. Radiation patterns for monopole (top), dipole (middle),
and quadrupole angular orders of the respective moment tensor ele-
ments. The azimuthal radiation patterns encapsulated by fl depend
on multipole order m as well as component l, that is, no summation
is implied by the above products.
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us(x̃)cosm�
u�(x̃)sinm�

uz(x̃)cosm�
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where m = 0,1,2 are monopole, dipole, and quadrupole ra-
diation types, respectively (Fig. 2), and x̃ = (s,z) = (r,✓)

spans a two-dimensional domain (Fig. 3) by cylindrical
(s,�,z) or spherical (r,✓,�) coordinates, respectively. This
relation is accurate for axisymmetry in source f= f(x̃) and
structure ⇢ = ⇢(x̃),C= C(x̃). After solving the set of 2-
D problems, seismograms and wavefields at any location
(s,�,z) are obtained by multiplication with these azimuthal
radiation factors in Eq. (2) during the post-processing stage
(Sect. 2.5). Conceptually, 3-D integrals in � over any in-
tegrand  that contains azimuthal dependencies such as in
Eq. (2) are then collapsed to 2-D integrals in D as
Z

�
 (x) d3x )

Z

D

 (x̃)d2x̃, (3)

by evaluating the integration over � analytically. This deliv-
ers solutions for the 3-D displacement vector u within a 2-
D computational domain (Fig. 3). Symmetry about the axis
(blue in Fig. 3) mandates all structural heterogeneities away
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be commonly known from any software implementation, the
level of automatism for the applications listed here is diverse,
and readers should refer to the manual of the most recent re-
lease version for up-to-date features of the code.

2 Methodology

The mathematical foundation and validation of spherically
symmetric, solid–fluid lower-frequency settings is detailed
in previous publications (Nissen-Meyer et al., 2007b, 2008).
In this section, we only sketch key methodological concepts,
while focusing on new additions and practical matters related
to usability, functionality and applicability. Our approach
accurately simulates 3-D wavefields in axisymmetric Earth
models, and distinguishes itself by

1. decreasing the computational costs by orders of magni-
tude compared to the 3-D method by running in 2-D,

2. making no limiting assumptions about wave-
propagation physics (except for very long-period
effects such as rotation; see Sect. 4.7) or kinematic
earthquake radiation.

It therefore falls in between traditional end members that are
typically optimized for either end of the frequency spectrum
(e.g., ray theory, normal-mode summation) and 3-D mod-
eling, by not compromising on essential wave-propagation
physics or the coverage of the entire recorded frequency band
between 0.001 and 1Hz. The efficiency gain is grounded
upon assuming axisymmetric background models, which re-
duces the numerical cost to a 2-D domain, whereas the third
dimension is tackled analytically. We shall forego detailed
treatment of classical spectral-element methods to highlight
the peculiarities associated with this axisymmetric setting.

2.1 Equations of motion

The 3-D integral (weak-form) elastodynamic equations of
motion in the solid Earth � read
mass term: M(u)z }| {Z

�
⇢w · @2t ud3x +

stiffness term: K(u)z }| {Z

�
rw :C :rud3x =

source term: F(u)z }| {Z

�
w · fd3x (1)

where u is the sought displacement vector, w a suitably cho-
sen test vector, f the source term, ⇢ the mass density, and
C the anisotropic fourth-order elasticity tensor with 21 inde-
pendent parameters (consult Nissen-Meyer et al. (2007b) for
details). It may be time dependent for intrinsic attenuation,
in which case the double contraction : implies a convolution.

2.2 Axisymmetric dimensional collapse

As shown in Nissen-Meyer et al. (2007a), one may an-
alytically separate radiation patterns into individual re-
sponses to each moment-tensor element Mij factorized in
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an approximate, order-of-magnitude estimation of computa-
tional cost, and minor algorithmic optimization does not af-
fect this overarching trend drastically. The slightly increased135

cost for AxiSEM above 10 seconds represents the fact that
the thin crustal layers at these long periods start to domi-
nate the smallest element size and thus increase the relative
cost due to this geometric constraint on the global timestep.
This is not seen in SPECFEM3D GLOBE, since intra-crustal140

layers are not explicitely meshed. Further commentary on
Fig. 1) is given in Section 2.7.

Considering desirable features for the inversion such
as comprehensive model-sampling, uncertainty analysis,
or probabilistic approaches, this represents not only a145

formidable challenge, but is essentially not computable even
with most optimistic estimates of the evolution of compu-
tation on a decadal time-scale, especially in 3D. Several
strategies of speeding up numerical methods exist, focused
on either the physical system or the implementation. Code150

optimization may exploit dedicated hardware infrastructures
such as GPUs (Rietmann et al., 2012), or algorithmic tasks
such as tensor-vector products (Nissen-Meyer et al., 2007b),
irregular meshing (Zhu et al., 2009) or local time-stepping.
These approaches usually lead to a performance speedup of155

about 2-3 in total CPU time. Physics-based approximations
often limit the frequency range either on the high end (as
implicitly done due to prohibitive cost in 3D methods) or
lower end (ray theory). Additionally, we commonly find cost
reductions related to reduced dimensionality (e.g., 2D, Zhu160

et al. (2009)), rheology (e.g. acoustic wave propagation), or
structural complexity by means of homogenization (Capdev-
ille et al., 2013). Such approximations can lead to orders of
magnitude faster codes, but need to be chosen carefully de-
pending on each application.165

1.3 3D waves in axisymmetric media

Several methods have been developed to effectively accom-
modate various levels of complexity in background struc-
tures. For spherically symmetric Earth models, normal-mode
summation (Dahlen & Tromp, 1998) elegantly tackles the170

grave end of the spectrum including such effects as grav-
ity and rotation (Dahlen, 1968). For higher frequencies,
the direct-solution method (Kawai et al., 2006), GEMINI
(Friederich & Dalkolmo, 1995), or Yspec (Al-Attar & Wood-
house, 2008) have proven efficient in delivering accurate175

seismograms. While in principle doable, all of these meth-
ods become computationally expensive if an entire wave-
field is needed as for sensitivity kernels (Nissen-Meyer et al.,
2007a), and do not allow for lateral heterogeneities. Ax-
isymmetric finite difference methods (Toyokuni & Takenaka,180

2006; Jahnke et al., 2008) may accommodate this effectively,
but suffer various shortcomings such as approximate sources,
lack of fluid domains and anisotropy (Jahnke et al., 2008),
and high dispersion errors for large propagation distances
of interface-sensitive phases such as surface or diffracted185
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naka, 2012).

The purpose of this paper is to introduce the axisymmet-
ric spectral-element implementation AxiSEM as a new and190

publicly available, production-ready method and code for
global wave propagation, which taps into parameter regimes
that have been previously unavailable at similar computa-
tional cost. We motivate the relevance of these parameter
regimes by various examples and present ideas for further195

extensions and applications. Exploitation of moment-tensor
source and single-force radiation patterns allow the compu-
tational domain to be collapsed to a 2D semi-disk, and the
azimuthal third dimension is computed analytically. Radi-
ation pattern symmetries require all sources to be located200

along the axis, and lateral heterogeneities are translated into
a 2.5-dimensional torus-like structure. Due to the dimen-
sional reduction, global wave propagation at typical seismic
periods can be tackled serially on workstations. Novel fea-
tures in this manuscript with respect to the methodology al-205

ready described in Nissen-Meyer et al. (2007b, 2008) include
2D parallelization, scalability to > 8000 cores, benchmarks
at 1Hz and for normal modes, extensions to visco-elastic
anisotropic media, fluid spheres, finite sources, axisymmetric
structures, tomographic models, comparison to data, generic210

post-processing for arbitrary source-receiver settings, sensi-
tivity kernels, and availability as an open-source code.

Figure 2. Radiation patterns for monopole (top), dipole (middle),
and quadrupole angular orders of the respective moment tensor ele-
ments. The azimuthal radiation patterns encapsulated by fl depend
on multipole order m as well as component l, that is, no summation
is implied by the above products.

azimuthal functions:

um(x) =

0

@
us(x̃)cosm�
u�(x̃)sinm�

uz(x̃)cosm�

1

A , (2)

where m = 0,1,2 are monopole, dipole, and quadrupole ra-
diation types, respectively (Fig. 2), and x̃ = (s,z) = (r,✓)

spans a two-dimensional domain (Fig. 3) by cylindrical
(s,�,z) or spherical (r,✓,�) coordinates, respectively. This
relation is accurate for axisymmetry in source f= f(x̃) and
structure ⇢ = ⇢(x̃),C= C(x̃). After solving the set of 2-
D problems, seismograms and wavefields at any location
(s,�,z) are obtained by multiplication with these azimuthal
radiation factors in Eq. (2) during the post-processing stage
(Sect. 2.5). Conceptually, 3-D integrals in � over any in-
tegrand  that contains azimuthal dependencies such as in
Eq. (2) are then collapsed to 2-D integrals in D as
Z

�
 (x) d3x )

Z

D

 (x̃)d2x̃, (3)

by evaluating the integration over � analytically. This deliv-
ers solutions for the 3-D displacement vector u within a 2-
D computational domain (Fig. 3). Symmetry about the axis
(blue in Fig. 3) mandates all structural heterogeneities away

Solid Earth, 5, 425–445, 2014 www.solid-earth.net/5/425/2014/



 

 

14 GNS Science Report 2018/33 
 

We convert the maximum simulated ground velocity from these simulations within the USGS 
adopted “instrumental intensity” framework (Figure A1.3) to “Perceived Shaking”. Within this 
framework, we consider groundmotions > 9.6 cm/s strong and capable of triggering ‘long or 
strong, get gone’.  

 
Figure A1.2 Peak ground velocity from our simulations as a function of distance from Tauranga.  

 
Figure A1.3 Intensity table showing classification scheme used to assess perceived shaking against peak 
ground motions. 

A1.2 Discrete Wavenumbermodelling 

To test the results from the AxiSEM numerical simulations, we solve the analytical approach 
of Bouchon and Aki (1977). In this method, the 3-dimensional displacement vector (u) is the 
summation of displacement potentials (phi and psi) which are solutions to the wave equation 
in terms of P and S wave velocities alpha and beta, respectively: 
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A4.0 APPENDIX 4: SEISMIC MOTIVATION 

We systematically use a spectral element modelling scheme (AxiSEM, Nissen-Meyer et al., 
2014) to simulate ground shaking in the North Island of New Zealand from scenario tsunamigenic 
earthquakes on the Kermadec subduction zone. We simulate Mw8.5 and Mw9.0 earthquakes at 
2o intervals (approximately 220km) along the trench and calculate resulting ground motions in 
Tauranga. We use Tauranga as an average proxy for the northern coast of the North Island, 
from the Bay of plenty through the Auckland region. We calculate ground velocities to 
frequencies as high as 1Hz. We further test these ground motions against those calculated using 
a discrete wavenumber integration scheme (Bouchon and Aki, 1977). We then compare the 
modelled ground motions with those predicted by recent ground motion prediction equations 
(Atkinson and Boore, 2003; Abrahamson et al, 2016; Zhao et al, 2006) and global analogues. In 
each of these 3 validation exercises, our synthetic calculations with AxiSEM lie within 
uncertainties or similar intensity classes as the compared data. We then use these simulations 
to test the limitations of ‘long or strong, get gone’ self evacuation through natural warning. While 
our synthetic models have significant uncertainty due to the unpredictable nature of the 
earthquake rupture process, they provide strong evidence for the inadequacy of natural warning 
to trigger evacuations in the northwestern North Island for significant tsunamigenic events as 
close as a few hundred kilometers from the New Zealand coast. 

We convert the maximum predicted ground velocity from these simulations within the USGS 
adopted “instrumental intensity” framework (Figure A4.1, Worden et al., 2012) to “Perceived 
Shaking”. Within this framework, we consider groundmotions > 9.6 cm/s strong and capable 
of triggering ‘long or strong, get gone’. 

Table A4.1 Intensity table showing classification scheme used to assess perceived shaking against peak 
ground motions. 

 

Results of this analysis for Mw8.5 and Mw9 are shown in Figure A4.1 and Figure A4.2. This 
analysis suggests that the nearest to New Zealand Mw8.5 event (37S, 180W) is only felt at 
intensity IV and an Mw9 event as close as (31S,176W) represent plausible cases that may not 
trigger ‘long or strong, get gone’ based on strength of ground shaking. Tsunami models 
demonstrate the large tsunami heights at the coastline expected to result from these events 
(Figure A4.3 and Figure A4.4 respectively). Tsunamis of such heights at the coast would be 
expected to cause severe onshore impacts due to inundation. Indicative and approximate 
tsunami travel times for similar events are shown in Figure A4.5. We note that this analysis 
does not consider duration of strong shaking, as significant variability in duration exists 
because of large uncertainties in rupture dynamics. In both presented, plausible scenarios, 
wave over 5m impact New Zealand coastlines following ground motions too weak to trigger 
systematic natural warning evacuations. 
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By using body force equivalents to seismic dislocations, the displacement potentials of a 
double-couple source can be related to seismic moment through the integral relations 

  

where uD, dxo, and dyo represent the seismic moment. By integrating these expressions, 
three components of displacement can be determined: 

 

 

These are of course frequency domain solutions. They can be turned into time-domain 
displacement seismograms. For our Kermadec megathrust case, the full reflected and 
transmitted wavefields can be found by discrete equations for P, SV, and SH as: 
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Discrete Wave Number Representation of Elastic Wave Fields 
in Three-Space Dimensions 

MICHEL BOUCHON 

Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 
Laboratoire de Gdophysique Interne, Unioersitd Scientifique et Mt•dicale de Grenoble, Grenoble, France 

We present the generalization to three dimensions of the discrete wave number representation method 
of Bouchon and Aki (1977). The method is developed to study the near field of a three-dimensional 
seismic source embedded in a layered medium. The elastic wave fields are represented by a superposition 
of plane waves propagating in discrete directions. The discretization is exact and results from a periodic 
two-dimensional arrangement of sources. The accuracy of the method is checked, in the case of a 
rectangular dislocation source radiating in an infinite medium, by comparing the results obtained with 
Madariaga's (1978) exact solution. Examples of the calculation of strong ground motion produced by a 
thrust fault and a strike slip fault are presented. 

INTRODUCTION 

The aim of this study is to provide a simple and complete 
method for calculating the elastic radiation near an arbi- 
trary three-dimensional seismic source embedded in a lay- 
ered mediumß The principle of the method was previously 
introduced by Bouchon and Aki [1977]. It relies on the exact 
discretization of the elastic wave fields which results from a 
periodic arrangement of sources. In this original paper the dis- 
cretiZation was done in one dimension only, therefore restrict- 
ing th e applicability of the method to two-dimensional wave 
propagation problems. We introduce here the discretization 
over the two horizontal components of the wave number, 
which makes the method applicable to three-dimensional 
problems. 

REPRESENTATION OF THE SOURCE WAVE FIELD 

In three dimensions the displacement vector can be written 
in the form 

u = V• + •/• (•) 
where • and •, which are referred to as the displacement 
potentials, are solutions of the wave equations 

where a and ft denote the compressional and shear velocities, 
respectively, and q• obeys the additional condition 

•'.q• = 0. (3) 
In the case of simple harmonic motions of frequency •o, (2) 
take the form 

(V a + k,•')4• = 0 (V • + koa)q• = 0 (4) 
with k• = •o/a and k 

we shall first derive the expressions of the displacement 
potentials radiated by elementary point sources. To do this, we 
follow th e approach used by Lamb [1904] for the two-dimen- 
sional case. We consider the source to be located at the origin 
of a Cartesian coordinate system (x, y, z) and assume as a 
typical solution of (4), applicable to the region z > 0, 

•b = A exp (-ikxx - ikyy- ivz) 
(•) 

• = B exp (-ik•x - ikyy - 
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where the time factor is omitted and where kx and ky are real 
and v and 3• are defined by 

• = (k• 2- k/- k/) 

-• = (k• 2- k/- ky2) •/2 

Imv_<0 
(6) 

Im-• <_ 0 

The corresponding solution for z < 0 is 
•b' = A' exp (-ik•x - ikry + ivz) 

•' = B' exp (-ik•x - ikvy + i'yz) 
(7) 

Let us first consider the effect of a periodic vertical force of 
amount Y exp (-ik•x - ik•y) per unit area acting on the plane 
z = 0. The discontinuity of the normal stress at this plane and 
the continuity of the tangential stress and of the displacement 
can be expressed as 

r,•(z = +0) - r•(z = -0) = -Y exp (-ik•x - ikyy) (8) 
r•(z = +0) = r•(z = -0) 

•(z = +o) = •(z = -o) (9) 

u(z = +0)= u(z = -0) 

Using Hooke's law and combining (8) and (9) with (1) and (3) 
yields the solution 

A =-A'= r/(2#k•-• 
Bx = Bx' = krA/'y 
Be = B' = -kxA/'y (10) 2 

B8 = Bs' = 0 
where the subscripts 1, 2, and 3 denote the x, y, and z com- 
ponents and where # is the rigidity of the medium. 

The solution for a concentrated point source can be ob- 
tained by superposing an infinite number of stress distribu- 
tions of the form (8). To find the superposition which actually 
results in a concentrated point force, we remark that using the 
Fourier theorem, the stress discontinuity can be written as 

f(x, y) = rzz(z = +0) - rz•(z = -0) 

1 f2 f_•exp(-ik•x-ikyy)dk•dk• 4•r 2 

ß f_• f_•f(x', y')exp (ikxx'+ikyy')dx' dy' 
(11) 
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axis as the direction of propagation of the rupture. Then, by 
using body force equivalents to seismic dislocations [Burridge 
and Knopoff, 1964; Haskell, 1964] the displacement potentials 
can be expressed as a function of the potentials radiated by 
elementary point forces through the relations 

4• = • \0Xo • exp -i7Xo dxodyo 
(19) 

) • = • k O Xo O Zo 7Xo dxo dyo 
where uD dxo dyo represents the seismic moment of a fault 
element. 

Carrying out the integration and differentiating the poten- 
tials, we get for the three components of motion (u, v, w) the 
expressions 

sgn(z)D u = 2L•L•k•: • • (2k/e-'• + (k•:- 2k/)e -'•') •x •y 

exp (ik•L - iw/cL )- 1 
w/c- k• 

.exp (ikrW) - 1 kr exp (- ik•x - ikry) 

z 

Li y • 
I I I ...... I I 

Fig. 1. Problem configuration. We consider an infinity of sources 
identical to one another and arranged in a periodic two-dimensional 
network. Each source is a rectangular fault. The rupture originates 
along a segment of line of length W and propagates over a distance L. 
The configuration shown i s used to compute the displacement field, 
at a point located at a distance z from the fault and whose projection 
on the fault plane lies at the middle of the fault. 

sgn(z)D v= 2LxLsk•: • Ftx Fry 

exp (ik•L - iw/cL ) - I 
o•/c- k• 

(20) The final step is to retrieve the time domain solution for one 
single source from the steady state solution for the source 
array. To illustrate how this is done, let us assume that we 
want to evaluate the displacement at the point (L/2, W/2, z) in 
the time interval [to, h]. We first choose the source intervals 
and Ls such that no disturbance from another source will 
arrive before the time h. This condition is satisfied if we take 

[(L•- L/2): + z:] •/: = ah 
[(L s - W/2): + L:/4 + z:] '/: = 

(21) 

u/D 
.6 

ß 

o I , I 

0 2 4 6 

at/w 

Fig. 2. Horizontal displacement produced by a rectangular fault radiating in an infinite homogeneous medium. The 
source-observation point configuration is shown at the top of Figure I. Our numerical calculation (right-hand side of:the 
figure) is compared with Madariaga's [ 1978] exact solution (left-hand side) at points located at distances z = 0, z = 0.1 W, z 
= 0.5W, and z = W from the fault. The amplitude is normalized to the value of the slip on the fault. 
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where y and z are location terms and l and theta are geometric terms of the source fault. 

Lastly, we apply the attenuation to generate 3-component displacement waveforms for select 
scenarios. 
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where k = (kz: + ky:t) •/ø-. Once each component of the source 
potential is decomposed in the form (½, •k sv, I/sx), the reflected 
wave field is readily obtained by applying the stress-free 
boundary conditions at the surfaceß 

We now give the expressions of the decoupled source poten- 
tials for two widespread types of earthquake sources: a vertical 
strike slip fault and a dip slip faultß Both sources are rectangu- 
lar dislocation faults similar to the one previously studiedß We 
take the z axis to be positive downward and restrict our 
attention to the radiation above the sourceß Then, for a right 
lateral strike slip fault extending in depth between Zo and zx 
(zx > Zo) and propagating from x = 0 to x = L we get for the 
(kz, ky) component of the source potentials the expressions 

½(kx, ky) = iD k,,k•, [exp (ik,,L - i w----L ) - 1] 

ß [exp (-i•,z•) - exp (-h, Zo)] 

ß exp (- ik•x - ik:vy + i•,z) 

For a thrust dislocation source extending in width between 
x = 0 and x = W and propagating upward from (y = 0, z = Zo) 
to (y = L cos 0, z = z•) at a constant dip angle 0 we have 

½(k,, ky) = L,,Lyko•_ in 0 cos • - v 

+(sin:O-cos:O)kyl[exp(ikxW)- 1 
ß exp (ik•,L cos0 - iw/cL - i•,z•) - exp (-i•,zo) 1 w/c- k•, cos 0 - •, sin 0 

ß exp (-ik,,x - ikyy + i•,z) (25) 

iD' I [ •SV(k•, ky) = 2L,,L•,ka: • 2 sin 0 cos O(k,, • + 2ky :) 

+(sin:O-cos:O) k_• (70--kx:-k•*-)l [ exp(ik,,W)-I 7 k• 

iD k,,ky 
•SU(k•, k•,) = L,,L•,ka • 

ß [exp (-i7z•) - exp (-i7zo)] 

ß exp (-ik,,x - ik•,y + i'yz) 

D ke:(k,, •- k•, •) 
VSX(k•,, k•,) = 2L•,L•,ke: 

ß [exp (ik,,L - iw----L) - 1 ] 
c 

ß [exp (-i7z•) - exp (-i7zo)] 

[exp (ik,,L - i •----L ) - 1 ] 
c 

(24) 

ß exp (-ikxx - ik:vy + i'yz) 

u/D , 
0.2 

.• 0.1 

o 
._'2 

'r' 0 

u/D 

exp (ik.vL cos 0 - io.,/cL - i7z:) - exp (-i7z0) 1 o•/c - k•, cos 0 - 7 sin 0 

ß exp (-ik•x- ikyy + i7z) 
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o 

Fig. 5. Surface displacements produced by a one-dimensional 
thrust fault radiating in a half space. The model is the same as the one 
used in Figure 4, but the source interval Lx is now equal to the fault 
width. 
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Fig. 6. Example of strong motion calculation for a strike slip fault 
radiating in a layered medium. The configuration used is shown at the 
bottom of the figure. The station is located 1 km away from the 
projection of the fault plane on the surface. The horizontal dis- 
placements (a) parallel and (b) perpendicular to the fault and the 
vertical displacement (c) are normalized to the value of the slip on the 
fault. The length of the signals is 6.3 s, and their beginning corre- 
sponds to the arrival of the P wave from the start of the rupture. 
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= D kxkt•: I ky 2LxLyk•: k 2 sin 0 cos 0 -- 

+ [sin: 0 - cos: 0)][exp (ik,,W) - 1 kx 

ß e..xp (ikyL cos 0 - io•/cL - i•/zx) - exp (-i7zo)] o•/c- ky cos 0 - 3* sin 0 

ß exp(-ik,,x - ikyy + i•/z) 

In the absence of any analytical solution for a three-dimen- 
sional source in a half space a comparison with an exact 
solution cannot be made. Bouchon and Aki [ 1977] have shown, 
however, that in the case of a two-dimensional source all the 
waves which result from the interaction of the source wave 
field with the free surface, such as surface waves or leaky 
modes, are fully included in the solution. 

An example of strong motion synthesized by using (25) is 
shown in Figure 4. The rupture originates at a depth of 13 km, 
propagates upward with a velocity of 2 km/s and at a dip angle 
of 40 ø, and stops 1 km below the surface. The fault width is 10 
km, and the slip time dependence is a step function. The 
compressional and shear wave velocities of the medium are 5.6 
km/s and 3.2 km/s, respectively. The calculation is made for a 
location above the fault plane at equal distance between the 
two sides of the fault and 12 km away from the epicenter. The 
cut-off frequency is 5 Hz. The prominence of the SP wave (the 
wave radiated at the source as a shear wave and critically 
reflected at the surface as a P wave) on the horizontal dis- 
placement confirms the results previously obtained for two- 
dimensional sources [Bouchon, 1978a]. 

If we take the source interval in the x direction to equal the 
fault width, we obtain the corresponding two-dimensional so- 
lution which is shown in Figure 5. 

When the source is located in a layered medium, the solu- 
tion is obtained by propagating the decoupled source wave 
field through the different layers using propagator matrices. 
An example of the calculation is presented in Figure 6. The 
source-medium-observation point configuration is shown at 
the bottom of the figure. The medium consists of a sedi- 
mentary layer overlying a half space, and the source is a strike 

slip fault. The propagation of the source wave field through 
the layer is carried out by using Dunkin's formulation of the 
Thomson-Haskell method [Dunkin, 1965]. 

CONCLUSION 

We have presented the generalization of the discrete wave 
number representation method of Bouchon and Aki [1977] to 
three-dimensional elastic wave propagation problems. The 
method constitutes a unique tool to compute the strong 
ground motion produced by a three-dimensional seismic 
source embedded in a layered medium. Although we have, in 
the present study, considered only simple dislocation sources, 
the method is applicable as well to more complicated source 
models [cf. Bouchon, 1978b]. 
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Figure A2.1 presents the 3-component velocity wavefield for an M8.5 with identical source 
parameters to the southernmost scenario considered with AxiSEM. 

 
Figure A1.4 Results of the southernmost M8.5 simulation shown in Figure 2.1. Top row is the 3-component 
displacement wavefield. Bottom row is the velocity wavefield used for comparison with AxiSEM results.  




